Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks
نویسندگان
چکیده
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.
منابع مشابه
Simulation study in Probabilistic Boolean Network models for genetic regulatory networks
Probabilistic Boolean Network (PBN) is widely used to model genetic regulatory networks. Evolution of the PBN is according to the transition probability matrix. Steady-state (long-run behaviour) analysis is a key aspect in studying the dynamics of genetic regulatory networks. In this paper, an efficient method to construct the sparse transition probability matrix is proposed, and the power meth...
متن کاملAn approximation method for solving the steady-state probability distribution of probabilistic Boolean networks
MOTIVATION Probabilistic Boolean networks (PBNs) have been proposed to model genetic regulatory interactions. The steady-state probability distribution of a PBN gives important information about the captured genetic network. The computation of the steady-state probability distribution usually includes construction of the transition probability matrix and computation of the steady-state probabil...
متن کاملOn Construction of Sparse Probabilistic Boolean Networks from a Prescribed Transition Probability Matrix
Probabilistic Boolean Networks (PBNs) are useful models for modeling genetic regulatory networks. In this paper, we propose efficient algorithms for constructing a sparse probabilistic Boolean network when its transition probability matrix and a set of possible Boolean networks are given. This is an interesting inverse problem in network inference and it is important in the sense that most micr...
متن کاملControl of Stationary Behavior in Probabilistic Boolean Networks by Means of Structural Intervention
Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene regulatory networks. The dynamical behavior of PBNs, which are probabilistic generalizations of Boolean networks, can be studied using Markov chain theory. In particular, the steady-state or long-run behavior of PBNs may reflect the phenotype or functional state of the cell. Approaches to alter the steady-state beh...
متن کاملProbabilistic Boolean Networks - The Modeling and Control of Gene Regulatory Networks
probabilistic boolean networks the modeling and control of probabilistic boolean networks the modeling and control of probabilistic boolean networks: the modeling and control probabilistic boolean networks society for industrial probabilistic boolean networks the modeling and control of probabilistic control of boolean networks with multiple from boolean to probabilistic boolean networks as mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comparative and Functional Genomics
دوره 4 شماره
صفحات -
تاریخ انتشار 2003